587 research outputs found

    Lower and upper bound intercept probability analysis in amplifier-and-forward time switching relaying half-duplex with impact the eavesdropper

    Get PDF
    In this paper, we proposed and investigated the amplifier-and-forward (AF) time switching relaying half-duplex with impact the eavesdropper. In this system model, the source (S) and the destination (D) communicate with each other via a helping of the relay (R) in the presence of the eavesdropper (E). The R harvests energy from the S and uses this energy for information transferring to the D. For deriving the system performance, the lower and upper bound system intercept probability (IP) is proposed and demonstrated. Furthermore, the Monte Carlo simulation is provided to justify the correctness of the mathematical, analytical expression of the lower and upper bound IP. The results show that the analytical and the simulation curves are the same in connection with the primary system parameters

    Power beacon-assisted energy harvesting in a half-duplex communication network under co-channel interference over a Rayleigh fading environment: Energy efficiency and outage probability analysis

    Get PDF
    In this time, energy efficiency (EE), measured in bits per Watt, has been considered as an important emerging metric in energy-constrained wireless communication networks because of their energy shortage. In this paper, we investigate power beacon assisted (PB) energy harvesting (EH) in half-duplex (HD) communication network under co-channel Interferer over Rayleigh fading environment. In this work, we investigate the model system with the time switching (TS) protocol. Firstly, the exact and asymptotic form expressions of the outage probability (OP) are analyzed and derived. Then the system EE is investigated and the influence of the primary system parameters on the system performance. Finally, we verify the correctness of the analytical expressions using Monte Carlo simulation. Finally, we can state that the simulation and analytical results are the same.Web of Science1213art. no. 257

    DoubleEcho: Mitigating Context-Manipulation Attacks in Copresence Verification

    Full text link
    Copresence verification based on context can improve usability and strengthen security of many authentication and access control systems. By sensing and comparing their surroundings, two or more devices can tell whether they are copresent and use this information to make access control decisions. To the best of our knowledge, all context-based copresence verification mechanisms to date are susceptible to context-manipulation attacks. In such attacks, a distributed adversary replicates the same context at the (different) locations of the victim devices, and induces them to believe that they are copresent. In this paper we propose DoubleEcho, a context-based copresence verification technique that leverages acoustic Room Impulse Response (RIR) to mitigate context-manipulation attacks. In DoubleEcho, one device emits a wide-band audible chirp and all participating devices record reflections of the chirp from the surrounding environment. Since RIR is, by its very nature, dependent on the physical surroundings, it constitutes a unique location signature that is hard for an adversary to replicate. We evaluate DoubleEcho by collecting RIR data with various mobile devices and in a range of different locations. We show that DoubleEcho mitigates context-manipulation attacks whereas all other approaches to date are entirely vulnerable to such attacks. DoubleEcho detects copresence (or lack thereof) in roughly 2 seconds and works on commodity devices

    Outage probability analysis of EH relay-assisted non-orthogonal multiple access (NOMA) systems over Block Rayleigh Fading Channel

    Get PDF
    Non-orthogonal multiple access (NOMA) has been identified as a promising multiple access technique for the fifth generation (5G) mobile networks due to its superior spectral efficiency. In this paper, we propose and investigate a Non-Orthogonal Multiple Access (NOMA) of energy harvesting (EH) relay assisted system over Block Rayleigh Fading Channel. In order to evaluate the performance of the proposed system, the integral expression of the outage probability is analyzed and derived. Numerical results confirm that our derived analytical results match well with the Monte Carlo simulations in connection with all possible system parameter

    Half-duplex power beacon-assisted energy harvesting relaying networks: system performance analysis

    Get PDF
    In this work, the half-duplex (HF) power beacon-assisted (PB) energy harvesting (EH) relaying network, which consists of a source (S), Relay (R), destination (D) and a power beacon (PB) are introduced and investigated. Firstly, the analytical expressions of the system performance in term of outage probability (OP) and the system throughput (ST) are analyzed and derived in both amplify-and-forward (AF) and decode-and-forward (DF) modes. After that, we verify the correctness of the analytical analysis by using Monte-Carlo simulation in connection with the primary system parameters. From the numerical results, we can see that all the analytical and the simulation results are matched well with each other

    Lower and upper bound form for outage probability analysis in two-way of half-duplex relaying network under impact of direct link

    Get PDF
    In this paper, the system performance of the two-way of half-duplex (HD) relaying network under the impact of the direct link is studied. The model system has two sources (S) and one destination (D) communicate by direct link and via relay (R). For system performance analysis, we derived the lower and upper bound for outage probability (OP). Furthermore, the analytical expressions of the system performance are verified by using the Monte Carlo simulation in the effect of main parameters. As shown in the results, we can the simulation and analytical results have a good agreement

    Design and characterization of SiON integrated optics components for optical coherence tomography

    Get PDF
    Optical coherence tomography (OCT) is a technique for high resolution imaging of biological tissues with a depth range of a few millimeters. OCT is based on interferometry to enable depth ranging. Currently, optical components for OCT are rather bulky and expensive; the use of integrated optical circuits presents a great opportunity to reduce costs and enhance system functionality and performance. We present the design and characterization of SiON-based integrated optics waveguides, splitters, couplers and interferometers for OCT operating at a wavelength of 1.3 um

    Performance analysis for power-splitting energy harvesting based two-way full-duplex relaying network over nakagami-m fading channel

    Get PDF
    Energy harvesting relay network is considered as the promising solution for a wireless communication network in our time. In this research, we present and demonstrate the system performance of the energy harvesting based two-way full-duplex relaying network over Nakagami-m fading environment. Firstly, we propose the analytical expressions of the achievable throughput and outage probability of the proposed system. In the second step, the effect of various system parameters on the system performance is presented and investigated. In the final step, the analytical results are also demonstrated by Monte-Carlo simulation. The numerical results demonstrated and convinced the analytical and the simulation results are agreed with each other
    • …
    corecore